Ham so va Do thi ( vao 100

fresh boy 9
fresh boy 9(6400 tài liệu)
(2 người theo dõi)
Lượt xem 6
0
Tải xuống miễn phí
Số trang: 7 | Loại file: DOC
0
Thêm vào bộ sưu tập

Thông tin tài liệu

Ngày đăng: 19/08/2013, 21:10

Mô tả: CÁC BÀI TOÁN VỀ HÀM SỐ VÀ ĐỒ THỊ I.Điểm thuộc đường – đường đi qua điểm. Điểm A(x A ; y A ) thuộc đồ thị hàm số y = f(x) y A = f(x A ). Ví dụ 1: Tìm hệ số a của hàm số: y = ax 2 biết đồ thị hàm số của nó đi qua điểm A(2;4). Giải: Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.2 2 a = 1 Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không? Giải: Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d) II.Cách tìm giao điểm của hai đường y = f(x) và y = g(x). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên. III.Quan hệ giữa hai đường thẳng. Xét hai đường thẳng : (d 1 ) : y = a 1 x + b 1 . (d 2 ) : y = a 2 x + b 2 . a) (d 1 ) cắt (d 2 ) a 1 a 2 . b) d 1 ) // (d 2 ) c) d 1 ) (d 2 ) d) (d 1 ) (d 2 ) a 1 a 2 = -1 IV.Tìm điều kiện để 3 đường thẳng đồng qui. Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y). Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số . V.Quan hệ giữa (d): y = ax + b và (P): y = cx 2 (c 0). 1.Tìm tọa độ giao điểm của (d) và (P). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình: cx 2 = ax + b (V) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx 2 để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (V) là số giao điểm của (d) và (P). 2.Tìm điều kiện để (d) và (P). a) (d) và (P) cắt nhau phương trình (V) có hai nghiệm phân biệt. b) (d) và (P) tiếp xúc với nhau phương trình (V) có nghiệm kép. c) (d) và (P) không giao nhau phương trình (V) vô nghiệm . VI.Viết phương trình đường thẳng y = ax + b biết. 1.Quan hệ về hệ số góc và đi qua điểm A(x 0 ;y 0 ) Bước 1: Dựa vào quan hệ song song hay vuông góc tìm hệ số a. Bước 2: Thay a vừa tìm được và x 0 ;y 0 vào công thức y = ax + b để tìm b. 2.Biết đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ). Do đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ) nên ta có hệ phương trình: Giải hệ phương trình tìm a,b. 3.Biết đồ thị hàm số đi qua điểm A(x 0 ;y 0 ) và tiếp xúc với (P): y = cx 2 (c 0). +) Do đường thẳng đi qua điểm A(x 0 ;y 0 ) nên có phương trình : y 0 = ax 0 + b (3.1) +) Do đồ thị hàm số y = ax + b tiếp xúc với (P): y = cx 2 (c 0) nên: Pt: cx 2 = ax + b có nghiệm kép (3.2) +) Giải hệ gồm hai phương trình trên để tìm a,b. VII.Chứng minh đường thẳng luôn đi qua 1 điểm cố định ( giả sử tham số là m). +) Giả sử A(x 0 ;y 0 ) là điểm cố định mà đường thẳng luôn đi qua với mọi m, thay x 0 ;y 0 vào phương trình đường thẳng chuyển về phương trình ẩn m hệ số x 0 ;y 0 nghiệm đúng với mọi m. +) Đồng nhất hệ số của phương trình trên với 0 giải hệ tìm ra x 0 ;y 0 . VIII.Một số ứng dụng của đồ thị hàm số. 1.Ứng dụng vào phương trình. 2.Ứng dụng vào bài toán cực trị. bµi tËp vÒ hµm sè. Bµi tËp ¸p dông Câu 1 ( Hå ChÝ Minh 2008-2009) a) Vẽ đồ thị (P) của hàm số y = –x 2 và đường thẳng (D): y = x – 2 trên cùng một cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính. Gi¶i: -3 -2 -1 1 2 3 -4 -3 -2 -1 x y O a) * Bng giỏ tr c bit ca hm s y = x 2 : x 2 1 0 1 2 y = x 2 4 1 0 1 4 * Bng giỏ tr c bit ca hm s y = x 2: x 0 2 y = x 2 2 0 th (P) v (D) c v nh sau: b) Phng trỡnh honh giao im ca (P) v (D) l: x 2 = x 2 x 2 + x 2 = 0 x = 1 hay x = 2 (a + b + c = 0) Khi x = 1 thỡ y = 1; Khi x = 2 thỡ y = 4. Vy (P) ct (D) ti hai im l (1; 1) v (2; 4). Bài 2 (Khánh Hòa 2008-2009) a) V th (P) ca hm s y = x 2 v ng thng (D): y =2 x 3 trờn cựng mt cựng mt h trc to O xy. b) Bằng phơng pháp đại số, xác định tọa độ giao điểm của (P) và (d) Bài 3: ( Thanh Hóa 2008-2009) Cho hm s y = x 2 cú th (P) v y = 2x 3 cú th (d) a) V th (P) trờn mt phng ta Oxy b) Bng phng phỏp i s, xỏc nh ta giao im ca (P) v (d) Gii: a) th hm s y = x 2 (hỡnh bờn) b) Ta giao im ca (P) v (d) l nghim ca h phng trỡnh: 2 2 2 y x (1) y x (2) y 2x 3 x 2x 3 0 = = = + = Phng trỡnh (2) vụ nghim vỡ cú = 1 3 = 2 < 0 Suy ra: H phng trỡnh trờn vụ nghim Vy: (P) v (d) khụng giao nhau Bài tập 4. ( Tiền Giang 2007-2008) Trong mt phng to Oxy cho parabol (P): y = 2 x v hai im A, B trờn (P) cú honh ln lt l -1 v 2. 1/ Vit phng trỡnh ng thng AB. 2/ Vit phng trỡnh ng thng (d) song song vi AB v tip xỳc vi (P). 3/ V (P) v (d) lờn cựng mt phng to Oxy. Bi tập 5 (1,5 im ): ( Quảng Nam 2008-2009 ) a) Cho hm s 2 x 2 1 y = , cú th l (P). Vit phng trỡnh ng thng i qua hai im M v N nm trờn (P) ln lt cú honh l 2 v 1. Bài 6: (2,50 điểm) ( Huế 2005-2006) Trên mặt phẳng tọa độ (hình vẽ), có điểm A thuộc đồ thị (P) của hàm số 2 y ax= và điểm B không thuộc (P). a) Tìm hệ số a và vẽ (P). b) Viết phơng trình đờng thẳng đi qua 2 điểm A và B. Xác định tọa độ giao điểm thứ hai của (P) và đờng thẳng AB. Giải: a) + Điểm A có tọa độ: (2; 3)A . + 3 ( ) 3 4 4 A P a a = = + Lập bảng giá trị và vẽ đúng đồ thị (P) b)+ Phơng trình đờng thẳng có dạng y ax b= + , đờng thẳng này đi qua A và B nên ta có hệ phơng trình: 3 2 6 2 a b a b = + = + + Giải hệ phơng trình ta đợc: 3 9 ; 4 2 a b = = ữ Vậy phơng trình đờng thẳng AB là: 3 9 4 2 y x= . + Phơng trình cho hoành độ giao điểm của (P) và đờng thẳng AB là: 2 2 3 3 9 6 0 4 4 2 x x x x = + = Giải phơng trình ta có 1 2 2 27 2; 3 4 x x y= = = Vậy tọa độ giao điểm thứ hai của (P) và đờng thẳng AB là 27 3; 4 ữ . Bài 7 ( Huế 2008-2009) Bài 2: (1,5 điểm) a) Tìm giá trị của m để hai đờng thẳng ( ) ( ) 2 4 2 2y m x m= + và 5 1y x m= + song song với nhau. b) Biết đờng cong trong Hình 1 là một parabol 2 y ax= . Tính hệ số a và tìm tọa độ các điểm thuộc parabol có tung độ 9y = . Giải: a) + Để hai đờng thẳng ( ) ( ) 2 4 2 2y m x m= + và 5 1y x m= + song song với nhau thì: 2 4 5 1 2 m m = 3 3 3 m m m = = b) + Từ Hình 1, ta có parabol 2 y ax= đi qua điểm ( ) 2; 2 nên: 2 1 2 .2 2 a a = = Hình 1 A + Gọi điểm trên parabol có tung độ 9y = là ( ) ; 9x , ta có: 2 2 1 9 18 18 3 2 2 x x x = = = = Vậy có 2 điểm trên parabol có tung độ bằng 9 là: ( ) ( ) 3 2 ; 9 , 3 2 ; 9 Bài Tập về nhà Bài tập 1. cho parabol y= 2x 2 . (p) a. tìm hoành độ giao điểm của (p) với đờng thẳng y= 3x-1. b. tìm toạ độ giao điểm của (p) với đờng thẳng y=6x-9/2. c. tìm giá trị của a,b sao cho đờng thẳng y=ax+b tiếp xúc với (p) và đi qua A(0;- 2). d. tìm phơng trình đờng thẳng tiếp xúc với (p) tại B(1;2). e. biện luận số giao điểm của (p) với đờng thẳng y=2m+1. ( bằng hai phơng pháp đồ thị và đại số). f. cho đờng thẳng (d): y=mx-2. Tìm m để +(p) không cắt (d). +(p) tiếp xúc với (d). tìm toạ độ điểm tiếp xúc đó? + (p) cắt (d) tại hai điểm phân biệt. +(p) cắt (d). Bài tập 2. cho hàm số (p): y=x 2 và hai điểm A(0;1) ; B(1;3). a. viết phơng trình đờng thẳng AB. tìm toạ độ giao điểm AB với (P) đã cho. b. viết phơng trình đờng thẳng d song song với AB và tiếp xúc với (P). c. viết phơng trình đờng thẳng d 1 vuông góc với AB và tiếp xúc với (P). d. chứng tỏ rằng qua điểm A chỉ có duy nhất một đờng thẳng cắt (P) tại hai điểm phân biệt C,D sao cho CD=2. Bài tập 3. Cho (P): y=x 2 và hai đờng thẳng a,b có phơng trình lần lợt là y= 2x-5 y=2x+m a. chứng tỏ rằng đờng thẳng a không cắt (P). b. tìm m để đờng thẳng b tiếp xúc với (P), với m tìm đợc hãy: + Chứng minh các đờng thẳng a,b song song với nhau. + tìm toạ độ tiếp điểm A của (P) với b. + lập phơng trình đờng thẳng (d) đi qua A và có hệ số góc bằng -1/2. tìm toạ độ giao điểm của (a) và (d). Bài tập 4. cho hàm số xy 2 1 = (P) a. vẽ đồ thị hàm số (P). b. với giá trị nào của m thì đờng thẳng y=2x+m (d) cắt đồ thị (P) tại hai điểm phân biệt A,B. khi đó hãy tìm toạ độ hai điểm A và B. c. tính tổng tung độ của các hoành độ giao điểm của (P) và (d) theo m. Bài tập5. cho hàm số y=2x 2 (P) và y=3x+m (d) a. khi m=1, tìm toạ độ các giao điểm của (P) và (d). b. tính tổng bình phơng các hoành độ giao điểm của (P) và (d) theo m. c. tìm mối quan hệ giữa các hoành độ giao điểm của (P) và (d) độc lập với m. Bài tập 6. cho hàm số y=-x 2 (P) và đờng thẳng (d) đI qua N(-1;-2) có hệ số góc k. a. chứng minh rằng với mọi giá trị của k thì đờng thẳng (d) luôn cắt đồ thị (P) tại hai điểm A,B. tìm k cho A,B nằm về hai phía của trục tung. b. gọi (x 1 ;y 1 ); (x 2 ;y 2 ) là toạ độ của các điểm A,B nói trên, tìm k cho tổng S=x 1 +y 1 +x 2 +y 2 đạt giá trị lớn nhất. Bài tập7. cho hàm số y= x a. tìm tập xác định của hàm số. b. tìm y biết: + x=4 + x=(1- 2 ) 2 + x=m 2 -m+1 + x=(m-n) 2 c. các điểm A(16;4) và B(16;-4), điểm nào thuộc đồ thị hàm số, điểm nào không thuộc đồ thị hàm số? tại sao. d. không vẽ đồ thị hãy tìm hoành độ giao điểm của đồ thị hàm số đã cho với đồ thị hàm số y= x-6 Bài tập 8. cho hàm số y=x 2 (P) và y=2mx-m 2 +4 (d) a.tìm hoành độ của các điểm thuộc (P) biết tung độ của chúng y=(1- 2 ) 2 . b.chứng minh rằng (P) với (d) luôn cắt nhau tại 2 điểm phân biệt. tìm toạ độ giao điểm của chúng. với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất. Bài tập 9. cho hàm số y= mx-m+1 (d). a. chứng tỏ rằng khi m thay đổi thì đờng thẳng (d) luôn đI qua điểm cố định. tìm điểm cố định ấy. b. tìm m để (d) cắt (P) y=x 2 tại 2 điểm phân biệt A và B, sao cho AB= 3 . Bài tập 10. trên hệ trục toạ độ Oxy cho các điểm M(2;1); N(5;-1/2) và đờng thẳng (d) y=ax+b. a. tìm a và b để đờng thẳng (d) đI qua các điểm M, N. b. xác định toạ độ giao điểm của đờng thẳng MN với các trục Ox, Oy. Bài tập 11. cho hàm số y=x 2 (P) và y=3x+m 2 (d). a. chứng minh với bất kỳ giá trị nào của m đờng thẳng (d) luôn cắt (P) tại 2 điểm phân biệt. b. gọi y 1 , y 2 kà các tung độ giao điểm của đờng thẳng (d) và (P) tìm m để có biểu thức y 1 +y 2 = 11y 1 .y 2 bài tập 12. cho hàm số y=x 2 (P). a. vẽ đồ thị hàm số (P). b. trên (P) lấy 2 điểm A, B có hoành độ lần lợt là 1 và 3. hãy viết phơng trình đờng thẳng AB. c. lập phơng trình đờng trung trực (d) của đoạn thẳng AB. d. tìm toạ độ giao điểm của (d) và (P). Bài tập 13 a. viết phơng trình đờng thẳng tiếp xúc với (P) y=2x 2 tại điểm A(-1;2). b. cho hàm số y=x 2 (P) và B(3;0), tìm phơng trình thoả mãn điều kiện tiếp xúc với (P) và đi qua B. c. cho (P) y=x 2 . lập phơng trình đờng thẳng đi qua A(1;0) và tiếp xúc với (P). d. cho (P) y=x 2 . lập phơng trình d song song với đờng thẳng y=2x và tiếp xúc với (P). e. viết phơng trình đờng thẳng song song với đờng thẳng y=-x+2 và cắt (P) y=x 2 tại điểm có hoành độ bằng (-1). f. viết phơng trình đờng thẳng vuông góc với (d) y=x+1 và cắt (P) y=x 2 tại điểm có tung độ bằng 9. . trình (V) là số giao điểm của (d) và (P). 2.Tìm điều kiện để (d) và (P). a) (d) và (P) cắt nhau phương trình (V) có hai nghiệm phân biệt. b) (d) và (P) tiếp. để +(p) không cắt (d). +(p) tiếp xúc với (d). tìm toạ độ điểm tiếp xúc đó? + (p) cắt (d) tại hai điểm phân biệt. +(p) cắt (d). Bài tập 2. cho hàm số (p):

— Xem thêm —

Từ khóa:

Xem thêm: Ham so va Do thi ( vao 100, Ham so va Do thi ( vao 100, Ham so va Do thi ( vao 100

Gửi bình luận

Bình luận
Lên đầu trang
  • Lưu Thị Quỳnh
    Lưu Thị Quỳnh · Vào lúc 04:22 am 11/09/2013
    Tài liệu rất hay. cảm ơn bạn :)
  • Nguyễn Thị Lan Hương
    Nguyễn Thị Lan Hương · Vào lúc 01:18 am 11/10/2013
    Cảm ơn tài liệu Ham so va Do thi ( vao 100 của bạn.
  • Vịt Bầu
    Vịt Bầu · Vào lúc 01:42 pm 11/11/2013
    fresh boy 9 ơi! Tài liệu hay quá! Bạn up tiếp đi!
  • fresh boy 0
    fresh boy 0 · Vào lúc 03:04 pm 30/12/2013
    Tài liệu hữu ích quá, up lên cho bạn nào chưa biết nhé
  • fresh boy 43
    fresh boy 43 · Vào lúc 06:05 pm 30/12/2013
    Thanks nhiều nha bạn, tài liệu rất hữu ích
Xem thêm
Đăng ký

Generate time = 0.0923109054565 s. Memory usage = 13.84 MB