Bài: Phương trình quy về bậc nhất hoặc bậc 2

fresh boy 2
fresh boy 2(8267 tài liệu)
(6 người theo dõi)
Lượt xem 9
0
Tải xuống
(Lịch sử tải xuống)
Số trang: 3 | Loại file: DOC
0

Thông tin tài liệu

Ngày đăng: 15/10/2013, 00:11

Mô tả: Trang 1 BÀI 3: MỘT SỐ PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT HOẶC BẬC HAI Tiết 1: I. Mục đích yêu cầu: 1. Về kiến thức - Củng cố các giải và biện luận phương trình bậc 1 và bậc 2 một ẩn. - Hiểu được cách biến đổi phương trình chứa dấu giá trị tuyệt đối đơn giản về phương trình bậc 1 hoặc bậc 2 một ẩn. 2. Về kỹ năng - Nắm vững phương pháp đưa phương trình về dạng bậc nhất hoặc bậc 2 một ẩn. Từ đó, đưa ra được cách giải và biện luận phương trình có chứa tham số. 3. Về tư duy - Hiểu được các bước biến đổi để có thể giải được phương trình quy về bậc 1 và bậc 2 đơn giản. 4. Thái độ. - Cẩn thận chính xác - Biết được toán học có ứng dụng trong thực tế như thế nào II. Chuẩn bị - Cách giải và biện luận phương trình bậc 1 và bậc 2 theo tham số m - Giáo viên: Chuẩn bị hệ thống kiến thức, hệ thống câu hỏi và bài tập. III.Phương pháp - Nêu vấn đề, vấn đáp thuyết trình gợi mở đi tới giải quyết vấn đề. IV. Hoạt động dạy học 1. Ổn định lớp 2. Kiểm tra bài cũ. Giải và biện luận phương trình: (2m+1)x – 3m – 2 = 0 (1) HS: * Xét a 0 2m 1 0 1 m b 0 3m 2 0 2 = + =   ⇔ ⇔ = −   ≠ − − ≠   Ta có (1)  0x = 1 2 ⇒ Phương trình vô nghiệm * Xét 1 m a 0 2m 1 0 2 2 b 0 3m 2 0 m 3  = −  = + =    ⇔ ⇔ ⇒    = − − =    = −   Vô lý * Xét a 0 ≠ ⇔ 2m + 1 1 0 m 2 ≠ ⇔ ≠ − Ta có (1) 3m 2 x 2m 1 + ⇔ = + Kết luận: Với 1 m 2 = − phương trình (1) vô nghiệm Với 1 m 2 ≠ − phương trình (1) có nghiệm 3m 2 x 2m 1 + = + GV: ? Nếu phương trình là: (2m+1)x-3m-2 = x+3 thì sẽ làm như thế nào? ? Nếu phương trình là: |(2m+1)x-3m-2 | = |x+3| thì sẽ làm như thế nào? Bùi Thị Hà Thu Trang 2 3. Bài mới Nội dung Hoạt động của thầy và trò 1. Phương trình dạng: |ax + b| = |cx + d| C1: Dùng định nghĩa f (x) g(x) f (x) g(x) f (x) g(x) =  = ⇔  = −  C2: Dùng phương pháp bình phương 2 vế đưa phương trình bậc 2 một ẩn GV: Ôn lại một số kiến thức về dấu giá trị tuyệt đối:  A A A  =  −  |A| ≥ 0  B 0 A B A B A B ≥   = ⇔ =     = −    A B A B A B =  = ⇔  = −  f (x) g(x) f (x) g(x) f (x) g(x) =  ⇒ = ⇔  = −  Ví dụ1 : Cho phương trình: |(2m+1)x-3m-2 | = |x+3| (2) a) Giải phương trình khi m = 0. HS: a) Với m = 0 ta có: x 2 x 3 (2) x 2 x 3 x 2 x 3 0x 5 Vô No 1 2x 1 x 2 − = +  ⇔ − = + ⇔  − = − −  = ⇒   ⇔  = − ⇔ = −  Phương trình (2) có nghiệm là 1 x 2 = − b) Giải và biện luận phương trình theo tham số m. b) phương trình (2) tương đương với (2m 1)x 3m 2 x 3 (2m 1)x 3m 2 x 3 2mx 3m 5 0 (*) (2m 2)x 3m 1 0 (**) + − − = +   + − − = − −  − − =  ⇔  + − + =  Giải và biện luận (*) và (**) Xét TH1: 1 pt(*) Vô No a 0 m=0 3m 1 1 pt(**) x 2m 2 2   = ⇒ ⇔ −  ⇔ = = −  + TH2: 2 3m 5 pt(*) x 1 a 0 m=-1 2m pt(**) Vô No +  ⇔ = = −  = ⇒ ⇔   TH3: 1 2 1 2 a 0 m 0 5 a 0 m 1 m=- x=-3 9 3m 5 3m 1 x x 2m 2m 2   ≠ ≠    ≠ ⇔ ≠ − ⇔ ⇔     + − =   =  + Bùi Thị Hà Thu Nếu A ≥ 0 Nếu A< 0 Trang 3 TH4: 1 2 3m 5 m 0 x 2m m 1 3m 1 x 5 m 2m 2 9  +   ≠ =   ≠ − ⇔   −   =   ≠ −  +  Kết luận: c) Tìm giá trị của tham số m để phương trình (2) có 1 nghiệm HS: Trả lời nhanh Ví dụ 2:Giải phương trình x 2 +4x – 3|x+2|+4 = 0 Gợi ý: C1: Dùng định nghĩa C2: Đặt ẩn phụ HS: Tự làm • Củng cố: - Cách giải và biện luận phương trình: |ax + b| = |cx + d| - Giải phương trình chứa trị tuyệt đối đơn giản • Bài tập về nhà: 24-a; 27; 28 SGK Bùi Thị Hà Thu . SỐ PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT HOẶC BẬC HAI Tiết 1: I. Mục đích yêu cầu: 1. Về kiến thức - Củng cố các giải và biện luận phương trình bậc. bậc 1 và bậc 2 một ẩn. - Hiểu được cách biến đổi phương trình chứa dấu giá trị tuyệt đối đơn giản về phương trình bậc 1 hoặc bậc 2 một ẩn. 2. Về kỹ năng

— Xem thêm —

Từ khóa:

Xem thêm: Bài: Phương trình quy về bậc nhất hoặc bậc 2, Bài: Phương trình quy về bậc nhất hoặc bậc 2, Bài: Phương trình quy về bậc nhất hoặc bậc 2

Gửi bình luận

Bình luận
Lên đầu trang
  • Meo
    Meo · Vào lúc 09:42 am 26/10/2013
    Cám ơn bác nhiều lắm, em đang cần cái này.
  • meo.uno
    meo.uno · Vào lúc 01:56 am 05/12/2013
    Tài liệu hay và bổ ích quá ạ. Em cám ơn mọi người đã chia sẻ những thông tin hữu ích này nhiều ạ
  • ngoclan
    ngoclan · Vào lúc 01:51 pm 21/12/2013
    Cám ơn anh,tìm thấy hi vọng với môn này rồi 
  • Hoa.vt
    Hoa.vt · Vào lúc 03:07 pm 21/12/2013
    Tài liệu rất hữu ích! cảm ơn bạn nhé!
  • Trần Thu Hiền
    Trần Thu Hiền · Vào lúc 11:55 am 28/12/2013
    Cảm ơn bạn đã chia sẻ tài liệu bổ ích nhé. 
Xem thêm
Đăng ký

Generate time = 0.151069879532 s. Memory usage = 13.35 MB