Công thức toán lớp 10-11-12

fresh boy 44
fresh boy 44(8457 tài liệu)
(6 người theo dõi)
Lượt xem 7
3
Tải xuống
(Lịch sử tải xuống)
Số trang: 17 | Loại file: DOC
0

Thông tin tài liệu

Ngày đăng: 09/11/2013, 22:11

Mô tả: Ôn tập toán 10 – 11 - 12 CÔNG THỨC TOÁN HỌC ( 10 – 11 – 12) 1. Các tính chất cơ bản của bất đẳng thức: 1.1. Tính chất 1 (tính chất bắc cầu): a > b và b > c ⇔ a > c 1.2. Tính chất 2: a > b ⇔ a + c > b + c Tức là: Nếu cộng 2 vế của bắt đẳng thức với cùng một số ta được bất đẳng thức cùng chiều và tương đương với bất đẳng thức đã cho. Hệ quả (Quy tắc chuyển vế): a > b + c ⇔ a – c > b 1.3 Tính chất 3: a b a c b d c d >  ⇒ + > +  >  Nếu cộng các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc trừ hai vế của 2 bất đẳng thức cùng chiều. 1.4 Tính chất 4: a > b ⇔ a.c > b.c nếu c > 0 hoặc a > b ⇔ c.c < b.c nếu c < 0 1.5 Tính chất 5: 0 . . 0 a b a c b d c d > >  ⇒ >  > >  Nếu nhân các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc chia hai vế của 2 bất đẳng thức cùng chiều. 1.6 Tính chất 6: a > b > 0 ⇒ a n > b n (n nguyển dương) 1.7 Tính chất 7: 0 n n a b a b> > ⇒ > (n nguyên dương) 2. Bất đẳng thức Cauchy (Cô-si): Định lí: Nếu 0a ≥ và 0b ≥ thì . 2 a b a b + ≥ . Đẳng thức xảy ra khi và chỉ khi: a = b Tức là: Trung bình cộng của 2 số không âm lớn hơn hoặc bằng trung bình nhân của chúng. Hệ quả 1: Nếu 2 số dương có tổng không đổi thì tích của chùng lớn nhất khi 2 số đõ bẳng nhau. Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất. Hệ quả 2: Nếu 2 số dương có tích không đổi thì tổng của chùng nhỏ nhất khi 2 số đó bằng nhau. Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng diện tích hình vuông có chu vi nhỏ nhất. http://kinhhoa.violet.vn 1 Ôn tập toán 10 – 11 - 12 3. Bất đẳng thức chứa giá trị trị tuyệt đối: 0 0 x x x >  =  − >  Từ định nghĩa suy ra: với mọi x R ∈ ta có: a. |x| ≥ 0 b. |x| 2 = x 2 c. x ≤ |x| và -x ≤ |x| Định lí: Với mọi số thực a và b ta có: |a + b| ≤ |a| + |b| (1) |a – b| ≤ |a| + |b| (2) |a + b| = |a| + |b| khi và chỉ khi a.b ≥ 0 |a – b| = |a| + |b| khi và chỉ khi a.b ≤ 0 4. Định lí Vi-et: Nếu phương trình bậc 2: ax 2 + bx +c = 0 (*) có 2 nghiệm x 1 , x 2 (a ≠ 0) thì tổng và tích 2 nghiệm đó là: S = x 1 + x 2 = b a − P = x 1 .x 2 = c a Chú ý: + Nếu a + b + c = 0 thì phương trình (*) có nhiệm x 1 = 1 và x 2 = c a + Nếu a – b + c = 0 thì phương trình (*) có nhiệm x 1 = -1 và x 2 = c a − Hệ quả: Nếu 2 số u, v có tổng S = u + v và tích P = u.v thì chúng là nghiệm của phương trình: x 2 – S.x + P = 0 5. Chia đoạn thẳng theo tỉ lệ cho trước: a. Định nghĩa: Cho 2 điểm phân biệt A, B. Ta nói điểm M chia đoạn thẳng AB theo tỉ số k nếu MA kMB= uuur uuur b. Định lí: Nếu điểm M chia đoạn thẳng AB theo tỉ số k ≠ 1 thì với điểm O bất kì ta có: 1 OA kOB OM k − = − uuur uuur uuuur 6. Trọng tâm tam giác: a. Điểm G là trọng tâm tam giác khi và chỉ khi: 0GA GB GC+ + = uuur uuur uuur r b. Nếu G là trọng tâm tam giác, thì với mọi điểm O ta có: 3OG OA OB OC= + + uuur uuur uuur uuur 7. Các Hệ Thức Lượng Trong Tam Giác: http://kinhhoa.violet.vn 2 nếu x ≥ 0 nếu x < 0 Ôn tập toán 10 – 11 - 12 7.1. Định lí Cosin trong tam giác: Định lí: Với mọi tam giác ABC, ta luôn có: 2 2 2 2 2 2 2 2 2 2 .cos 2 .cos 2 .cos a b c bc A b a c ac B c b a ba C = + − = + − = + − 7.2. Định lí sin trong tam giác: Định lí: Trong tam giác ABC, với R là bán kính đường tròn ngoại tiếp ta có: 2 sin sin sin a b c R A B C = = = 7.3. Công thức độ dài đường trung tuyến: 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4 2 4 a b c b c a m a c b m b a c m + = − + = − + = − 8. Tỉ số lượng giác của một số góc cần nhớ: Góc 0 0 30 0 45 0 60 0 90 0 120 0 135 0 150 0 180 0 0 6 π 4 π 3 π 2 π 2 3 π 3 4 π 5 6 π π sin 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 cos 1 3 2 2 2 1 2 0 – 1 2 – 2 2 – 3 2 -1 tg 0 1 3 1 3 || – 3 1 – 1 3 0 cotg || 3 1 1 3 0 – 1 3 1 – 3 || 9. Công thức biến đổi tích thành tổng: http://kinhhoa.violet.vn 3 Ôn tập toán 10 – 11 - 12 1 cos .cos [cos( ) cos( )] 2 1 sin .sin [cos( ) cos( )] 2 1 sin .cos [sin( ) sin( )] 2 a b a b a b a b a b a b a b a b a b = − + + = − − + = + + − 10. Công thức biến đổi tổng thành tích: cos cos 2cos .cos 2 2 cos cos 2sin .sin 2 2 sin sin 2sin .cos 2 2 sin sin 2cos .sin 2 2 a b a b a b a b a b a b a b a b a b a b a b a b + − + = + − − = − + − + = + − − = 11.Công thức nhân đôi: 2 2 2 2 2 cos2 cos sin 2cos 1 1 2sin sin 2 2sin cos 2 2 ( , , ) 1 2 2 2 a a a a a a a a tga tg a a k a k k tg a π π π π = − = − = − = = ≠ + ≠ + ∈ − Z 12. Công thức nhân ba: 3 3 sin3 3sin 4sin cos3 4cos 3cos a a a a a a = − = − 13. Công thức hạ bậc: 2 2 2 3 3 cos2 1 cos 2 1 cos2 sin 2 1 cos2 1 cos 2 3sin sin 3 sin 4 3cos cos3 cos 4 a a a a a tg a a a a a a a a + = − = − = + − = + = http://kinhhoa.violet.vn 4 Ôn tập toán 10 – 11 - 12 14. Công thức cộng: sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin a b a b a b a b a b a b a b a b a b a b a b a b + = + − = − + = − − = + Ngoài ra ta cũng có công thức sau với một số điều kiện: ( ) (*) 1 . ( ) (**) 1 . tga tgb tg a b tga tgb tga tgb tg a b tga tgb − − = + + + = − (*) có điều kiện: , , 2 2 2 a k b k a b k π π π π π π ≠ + ≠ + − ≠ + (**) có điều kiện: , , 2 2 2 a k b k a b k π π π π π π ≠ + ≠ + + ≠ + 15. Công thức tính tga, cosa, sina theo 2 a t tg= : 2 2 2 2 2 sin 1 1 cos 1 2 , 1 2 t a t t a t t tga a k t π π = + − = + = ≠ + − 16. Công thức liên hệ giữa 2 góc bù nhau, phụ nhau, đối nhau và hơn kém nhau 1 góc π hoặc 2 π : 16.1. Hai góc bù nhau: sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga π π π π − = − = − − = − − = − 16.2. Hai góc phụ nhau: http://kinhhoa.violet.vn 5 Ôn tập toán 10 – 11 - 12 sin( ) cos 2 cos( ) sin 2 ( ) 2 ( ) 2 a a a a tg a cotga cotg a tga π π π π − = − = − = − = 16.3. Hai góc đối nhau: sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga − = − − = − = − − = − 16.4 Hai góc hơn kém nhau 2 π : sin( ) cos 2 cos( ) sin 2 ( ) 2 ( ) 2 a a a a tg a tga cotg a cotga π π π π + = + = − + = − + = − 16.5 Hai góc hơn kém nhau π : sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga π π π π + = − + = − + = + = 16.6. Một số công thức đặc biệt: sin cos 2 sin( ) 4 sin cos 2 sin( ) 4 x x x x x x π π + = + − = − 17. Phương trình lượng giác 1. Phương trình cơ bản: * sinx = sina x = a + k2π hoặc x = π - a + k2π http://kinhhoa.violet.vn 6 Ôn tập toán 10 – 11 - 12 * cosx = cosa ⟺ x = ± a + k2π * tgx = tg a x = a + kπ⟺ (x ≠ k ) * cotgx = cotga ⟺ x = a + kπ (x ≠ kπ) 2. Phương trình đẳng cấp đối với sinx và cosx: Các phương trình lượng giác * asin 2 x + bsinx.cosx + c.cos 2 x = 0 (1) * asin 3 x + bsin 2 x.cosx + c.sinx.cos 2 x + dcos 3 x = 0 (2) * asin 4 x + bsin 3 x.cosx + csin 2 x.cos 2 x + dsinx.cos 3 x + ecos 4 x = 0 (3) gọi là phương trình đẳng cấp bậc 2, 3, 4 đối với sinx và cosx. Do cosx ≠ 0 nên chia hai vế của phương trình (1), (2), (3) theo thứ tự cho cos 2 x, cos 3 x, cos 4 x đưa phương trình đã cho về phương trình mới và ta dễ dàng giải các phương trình này. 3. Phương trình bậc nhất đối với sinx và cosx: * sinx + bcosx + c = 0 (1), a 2 + b 2 ≠ 0 phương trình (1) có nghiệm a 2 + b 2 - c 2 ≥ 0 Có ba cách giải loại phương trình này : - Giả sử a ≠ 0 (1) sin cos 0 b c x x a a ⇔ + + = (2) Đặt : b tg a ϕ = (2) sin cos 0 c x tg x a ϕ ⇔ + + = sin( ) cos c x a ϕ ϕ ⇔ + = − Ta dễ dàng giải phương trình này. - Đặt : 2 x tg t = 2 2 2 2 1 (1) 0 1 1 t t a b c t t − ⇔ + + = + + Giải phương trình bậc hai đối với t, dễ dàng giải được phương trình (1). - Do 2 2 0a b+ ≠ , chia hai vế của phương trình cho 2 2 a b+ : 2 2 2 2 2 2 (1) sin cos a b c x x a b a b a b ⇔ + = − + + + Đặt : 2 2 2 2 sin cos a a b b a b α α  =  +    =  +  http://kinhhoa.violet.vn 7 Ôn tập toán 10 – 11 - 12 2 2 (1) sin( ) c x a b α ⇔ + = − + (đây là phương trình cơ bản). Chú ý : Ta luôn có : 2 2 | sin sin |a x b x a b + ≤ + Dấu "=" xảy ra khi và chỉ khi sin(x + a) = 1. 4. Phương trình đối xứng đối với sinx và cosx: a(sinx + cosx) + bsinxcosx = c (1) (a, b, c là hằng số) Giải phương trình (1) bằng cách đặt : sinx + cosx = t , | | 2t ≤ Đưa (1) về phương trình 2 2 ( 2 ) 0bt at b c + − + = Giải phương trình (2) với | | 2t ≤ . 5. Hệ phương trình lượng giác: 1) Hệ phương trình lượng giác một ẩn. Chẳng hạn có hệ phương trình : sin 1 cos 0 x x =   =  Có hai phương pháp giải : * Phương pháp thế, giải một phương trình của hệ rồi thế nghiệm tìm được vào phương trình còn lại. * Phương pháp tìm nghiệm chung, giải tìm nghiệm của mỗi phương trình trong hệ, sau đó tìm nghiệm chung. 2) Hệ phương trình lượng giác hai ẩn. Chẳng hạn có hệ phương trình : 3 sin sin 1 x y x y π  + =    + =  Phương pháp chung là đưa nó về hệ phương trình đại số hai ẩn, hoặc đa về phương trình tổng tích. 18. Tổ hợp, hoán vị, chỉnh hợp: 18.1. Hoán vị: http://kinhhoa.violet.vn 8 Ôn tập toán 10 – 11 - 12 + Định nghĩa: Một hoán vị của n phần tử là một bộ gồm n phần tử đó, được sắp xếp theo một thứ tự nhất định, mỗi phần tử có mặt đúng một lần. Số tất cả các hoán vị khác nhau của n phần tử ký hiệu là P n + Công thức : P n =1.2.3 .n = n ! 18.2 Chỉnh hợp: + Định nghĩa: Một chỉnh hợp chập k của n phần tử ( 0 k n ≤ ≤ ) là một bộ sắp thứ tự gồm k phần tử lấy ra từ n phần tử đã cho. số tất cả các chỉnh hợp chập k của n phần tử ký hiệu là k n A +Công thức : ( ) 1 0 1 ! ! ( 1) .( 1) ( ) ! 1 ! k n k n k k n n n n n n n n n n n A n k A n n n k A n k A A P n A A A n + − = − = − − + = − = = = = = (qui ước 0! = 1) 18.3 Tổ chợp: + Định nghĩa: Cho một tập hợp a gồm n phần tử (n nguyên dương). Một tổ hợp chập k của n phần tử ( 0 k n ≤ ≤ ) là một tập con của a gồm k phần tử. Số tất cả các tổ hợp chập k của n phần tử ký hiệu là k n C + Công thức: ! !( )! ( 1) .( 1) ! k n k n n C k n k n n n k C k = − − − + = + Tính chất: 0 0 1 1 1 1 1 . 2 k n k n n n n n n n n n n k k k n n n C C C C C C C C C C − + + + = = = + + + = + = 18.4. Công thức Newton: http://kinhhoa.violet.vn 9 Ôn tập toán 10 – 11 - 12 T k là số hạng thứ k +1 của khai triển nhị thức (a + b) n : k n k k k n T C a b − = 0 1 1 2 2 2 ( ) . . n n n n m n m m n n n n n n n a b C a C a b C a b C a b C b − − − + = + + + + + + 19. Phương pháp tọa độ trong mặt phẳng và không gian: 19.1 Trong mặt phẳng: Cho các vec-tơ 1 1 2 2 ( , ), ( , )a x y b x y r r và các điểm 1 1 2 2 ( , ), ( , )A x y B x y : 1 2 1 2 .a b x x y y = + r r 2 2 1 1 | |a x y= + r 2 2 2 1 2 1 ( ) ( )d AB x x y y = = − + − 1 2 1 2 2 2 2 2 1 1 2 2 cos( , ) x x y y a b x y x y + = + + + r r 1 2 1 2 0a b x x y y ⊥ ⇔ + = r r 12.2 Trong không gian: Cho các vec-tơ 1 1 1 2 2 2 ( , , ), ( , , )a x y z b x y z r r và các điểm 1 1 1 2 2 2 ( , , ), ( , , )A x y z B x y z : 1 2 1 2 1 2 .a b x x y y z z = + + r r 2 2 2 1 1 1 | |a x y z= + + r 2 2 2 2 1 2 1 2 1 ( ) ( ) ( )d AB x x y y z z = = − + − + − 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 cos( , ) x x y y z z a b x y z x y z + + = + + + + r r 1 2 1 2 1 2 0a b x x y y z z ⊥ ⇔ + + = r r 20. Đường thẳng trong mặt phẳng và trong không gian: 20.1 Đường thẳng trong mặt phẳng: a. Khoảng cách: + Khoảng cách từ điểm M(x 0 , y 0 ) đến đương thẳng (d) : Ax + By + C = 0 0 0 2 2 | Ax |By C MH A B + + = + http://kinhhoa.violet.vn 10 . Ôn tập toán 10 – 11 - 12 CÔNG THỨC TOÁN HỌC ( 10 – 11 – 12) 1. Các tính chất cơ bản của bất đẳng thức: 1.1. Tính chất 1 (tính chất. = − = − = − = = ≠ + ≠ + ∈ − Z 12. Công thức nhân ba: 3 3 sin3 3sin 4sin cos3 4cos 3cos a a a a a a = − = − 13. Công thức hạ bậc: 2 2 2 3 3 cos2 1 cos 2

— Xem thêm —

Từ khóa:

Xem thêm: Công thức toán lớp 10-11-12, Công thức toán lớp 10-11-12, Công thức toán lớp 10-11-12

Gửi bình luận

Bình luận
Lên đầu trang
  • Hòn Mốc
    Hòn Mốc · Vào lúc 05:52 pm 23/11/2013
    Tài liệu này hay đấy nhi. :)
  • Vân Phiêu Phiêu
    Vân Phiêu Phiêu · Vào lúc 06:57 pm 13/12/2013
    Hehe, phải xem mấy cái bí quyết trong này thế nào mới được :)))
  • fresh boy 8
    fresh boy 8 · Vào lúc 08:17 pm 18/12/2013
    Cảm ơn bạn nhiều nhé! Tài liệu này rất hay!
  • fresh boy 35
    fresh boy 35 · Vào lúc 05:10 pm 27/12/2013
    Cám ơn các bác nhé, rất bổ ích, hy vọng sẽ còn nhiều bài viết hay như thế này
  • fresh boy 43
    fresh boy 43 · Vào lúc 07:46 pm 28/12/2013
    Cảm ơn bạn nha. Chúc bạn thành công, vui vẻ nha
Đăng ký

Generate time = 0.174755096436 s. Memory usage = 13.85 MB