Bài tập và bài giải phương pháp tính

Quỳnh Lưu
Quỳnh Lưu(11777 tài liệu)
(76 người theo dõi)
Lượt xem 8854
220
Tải xuống 2,000₫
Số trang: 35 | Loại file: DOCX
2
Thêm vào bộ sưu tập

Thông tin tài liệu

Ngày đăng: 14/11/2012, 09:17

Mô tả: bài tập và bài giải phương pháp tính Bài 2: Dùng phương pháp chia đôi tìm nghiệm gần đúng của x3 + 3x2 - 3 = 0với độ chính xác 10-3, biết khoảng phân ly nghiệm (-3 ; -2).Lời giải :Ta có: f (x) = x3 + 3x2 - 3f’ (x) = 3 x2 +6x <=> f’(x) = 0 => x1 = 0 x2 = -2Bảng biến thiên:X -2 0 +∞f (x) 0 0 +∞f (x) -∞ 1 -3Ta có : f (-3) = - 3 < 0 Khoảng phân ly nghiệm [ -3; -2]f (-2) = 1 > 0 Áp dụng phương pháp chia đôi ta có:C1 = 2ba+ = 2)2()3(−+− = -2.5 => F1(C1) = 0.125 >0 => Khoảng phân ly nghiệm [ -3;-2.5 ]C2 = 2)5.2()3(−+− = -2.75 => F2(C2) = -1.109 < 0 => Khoảng phân ly nghiệm [-2.75; -2.5 ]C3 = 2)5.2()75.2(−+− = -2.625 => F3(C3) = - 0.416 < 0 => Khoảng phân ly nghiệm [-2.625; -2.5 ]C4 = 2)5.2()625.2(−+− = -2.5625 => F4(C4) = - 0.127 < 0 => Khoảng phân ly nghiệm [-2.5625; -2.5 ]C5 = 2)5.2()5625.2(−+− = -2.53125 => F5(C5) = 0.004 >0 => Khoảng phân ly nghiệm [-2.5625; -2.53125 ]C6 = -2.546875 => F6(C6) = - 0.061 < 0 => Khoảng phân ly nghiệm [-2.546875; -2.53125 ]C7 = -2.5390625=> F7(C7) = - 0.029 < 0 => Khoảng phân ly nghiệm [-2.5390625; -2.53125 ]C8 = -2.53515=> F8(C8) = - 0.012 < 0 => Khoảng phân ly nghiệm [-2.53515; -2.5390625 ]C9 = -2.537106=> F9(C9) = - 0.020 < 0 => Khoảng phân ly nghiệm [-2.537106; -2.5390625 ]C10 = -2.538084=> F10(C10) = - 0.024 < 0 => Khoảng phân ly nghiệm [-2.538084; -2.5390625 ]Ta lấy nghiệm gần đúng: ξ= - 2.538084Đánh giá sai số: |α – bn| ≤ bn - an = |-2.5390625 – (-2.538084) | = 9,785.10- 4 < 10-3Bài 3: Dùng phương pháp lặp, tìm nghiệm đúng với độ chính xác 10-3a) x3 + 3x2 – 3 = 0 , biết khoảng cách ly nghiệm là ( -2.75; -2.5)b)1+x = x1Lời giải :a) x3 + 3x2 – 3 = 0 , biết khoảng cách ly nghiệm là [ -2.75; -2.5]<=> x3 = 3 - 3x2 <=> (3 - 3x2 )1/3 Ta nhận thấy | f ’ (x) | ≤ 0.045< 1 nên ta chọn hàm lặp  (x) = (3 - 3x2 )1/3Để bắt đầu quá trình lặp ta chọn xo là 1 số bất kỳ € [ -2.75; -2.5]Do f (- 2.5) < 0 nên ta chọn đầu b = - 2.5 cố định, chọn xấp xỉ đầu x0 = - 2.5Ta có quá trình lặp .Đặt  (x) = (3 - 3x2 )1/3 <=> ’(x) = 31(3 – 3x)-2/3 = 31. 322)33(1x−Để bắt đầu quá trình lặp ta chọn xo là 1 số bất kỳ € [ -2.75; -2.5]xo = - 2.5 ; q = 31 . Vì α € [ -2.75; -2.5] ta có: | ’(x) | ≤ 31 ∀x € [ -2.75; -2.5]; ’(x) < 0 ∀x € [ -2.75; -2.5] xn + 1 = (3 - 3x2 )1/3 xo = - 2.5x1 = (3 – 3.(-2.5)2 )1/3 = -2.5066x2 = (3 – 3.( x1)2 )1/3 = -2.5119x3 = (3 – 3.( x2)2 )1/3 = -2.5161x4 = (3 – 3.( x3)2 )1/3 = -2.5194x5 = (3 – 3.( x4)2 )1/3 = -2.5221x6 = (3 – 3.( x5)2 )1/3 = -2.5242x7 = (3 – 3.( x6)2 )1/3 = -2.5259x8 = (3 – 3.( x7)2 )1/3 = -2.5272x9 = (3 – 3.( x8)2 )1/3 = -2.5282x10= (3 – 3.( x9)2 )1/3 = -2.590x11 = (3 – 3.( x10)2 )1/3 = -2.5296x12 = (3 – 3.( x11)2 )1/3 = -2.5301Ta lấy nghiệm gần đúng: ξ= - 2.5301Đánh giá sai số: |α - x12 | = qq−1| x12 - x11 | = 2.5.10 - 4 < 10-3b) 1+x = x1 Đặt f(x) = 1+x - x1Từ đồ thị ta có :f (0.7) = - 0.12473 < 0f (0.8) = 0.09164 > 0 f (0.7) . f (0.8) < 0 . Vậy ta có khoảng phân ly nghiệm là [ 0.7; 0.8]Ta có: <=> x = 11+x = (x + 1 ) - 1/2Đặt  (x) = (x + 1 ) - 1/2 <=> ’(x) = -21(x + 1) - 3/2 = - 21.3)1(1+xTa nhận thấy | f ’ (x) | ≤ 0.4141< 1 nên ta chọn hàm lặp  (x) = (x + 1 ) - 1/2Để bắt đầu quá trình lặp ta chọn xo là 1 số bất kỳ € [ 0.7; 0.8]Do f (0.7) < 0 nên ta chọn đầu b = 0.8 cố định, chọn xấp xỉ đầu x0 = 0.7.Ta có quá trình lặp q = 0.4141 . Vì α € [ 0.7; 0.8] ta có: | ’(x) | ≤21 ∀x € [ 0.7; 0.8] ; ’(x) < 0 ∀x € [ 0.7; 0.8] xn + 1 = (x + 1 ) -1/2 xo = 0.7x1 = (0.7 + 1 ) -1/2 = 0.766964988x2 = (x1+ 1 ) -1/2 = 0.75229128x3 = (x2+ 1 ) -1/2 = 0.755434561x4 = (x3+ 1 ) -1/2 = 0.754757917Ta lấy nghiệm gần đúng: ξ= 0.754757917Đánh giá sai số: |α - x4 | = qq−1| x4 – x3 | = 4,7735.10-4 < 10-3Bài 4: Dùng phương pháp dây cung và tiếp tuyến, tìm nghiệm đúng với độ chính xác 10-2a) x3 + 3x2 + 5 = 0b) x4 – 3x + 1 = 0Lời giải :a) x3 + 3x2 + 5 = 0Tìm khoảng phân ly nghiệm của phương trình:f (x) = x3 + 3x2 + 5<=> x3 = 5 - 3x2Đặt y1 = x3y2 = 5 - 3x2 y -2   0  1 x -1 -2 Từ đồ thị ta có:f (-2 ) = - 9 < 0 Khoảng phân ly nghiệm [ - 2 ; -1 ]f (-1 ) = 1 > 0 Vì f (-2 ) . f (-1 ) < 0 * Áp dụng phương pháp dây cung ta có: Do f (-2 ) = - 9 < 0 => chọn xo = -2 x1 = xo – )()()).((0afbfabxf−−= -1.1f (x1) = 0.036 > 0 => Khoảng phân ly nghiệm [ - 2 ; -1.1 ]x2 = x1 – )()()).((1afbfabxf−−= -1.14f (x2) = 0.098 > 0 => Khoảng phân ly nghiệm [ - 2 ; -1.14 ]x3 = x2 – )()()).((2afbfabxf−−= -1.149f (x3) = 0.0036> 0 => Khoảng phân ly nghiệm [ - 2 ; -1.149 ]x4 = -1.152 => f (x4) = 0.015> 0 => Khoảng phân ly nghiệm [- 2 ; -1.152 ]x5 = -1.1534 => f (x5) = 0.0054 > 0 => Khoảng phân ly nghiệm [- 2 ;-1.1534 ]x6 = -1.1539 => f (x6) = -1.1539 < 0 => Khoảng phân ly nghiệm [- 2 ;-1.1539 ].Ta chọn nghiệm gần đúng ξ= - 1.53Đánh giá sai số: |ξ- x6 | ≤ |mxf )(| với m là số dương : 0 < m ≤ f’(x)∀x € [-2 ;-1] |ξ- x6 | ≤ 1.36 .10 -3 < 10 -2* Áp dụng phương pháp tiếp tuyến ( Niwtơn) ta có:f ’(-2) = 19 > 0f ’’(-2) = -12 < 0=> f ’(-2) . f ’’(-2) < 0 nên ta chọn x0 = -2Với x0 = -2 ta có: x1 = x0 - )()(0'0xfxf= -1.4x2 = x1 - )()(1'1xfxf= -1.181081081x3 = x2 - )()(2'2xfxf= -1.154525889x4 = x3 - )()(3'3xfxf= -1.15417557Ta chọn nghiệm gần đúng ξ= - 1.154Đánh giá sai số: |ξ- x4 | ≤ |mxf )(| với m là số dương : | f’(x) |≥ m > 0∀x € [-2 ;-1] |ξ- x4 | ≤ 1.99 .10 - 4 < 10 -2b) x4 – 3x + 1 = 0Tìm khoảng phân ly nghiệm :f (x) = x4 – 3x + 1f’(x) = 4x3 - 3 <=> f’(x) = 0 => => x = 343= 375.0Bảng biến thiên:X -∞375.0+∞f (x) -∞ 0 +∞f (x) - 1.044Ta có : f (0) = 1 > 0 f (1) = -1< 0 Khoảng phân ly nghiệm [ 0 ; 1 ] ; [ 1; 2 ] f (2) = 11> 0* Áp dụng phương pháp dây cung trong khoảng [ 0 ; 1 ] ta có: Do f (1 ) = - 1 < 0 => chọn xo = 1 x1 = xo – )()()).((0afbfabxf−−= 0.5f (x1) = - 0.4375 <0 => Khoảng phân ly nghiệm [ 0; 0.5 ]x2 = x1 – )()()).((1afbfabxf−−= 0.3478f (x2) = - 0.0288 <0 => Khoảng phân ly nghiệm [ 0 ; 0.3478]x3 = x2 – )()()).((2afbfabxf−−= 0.3380f (x3) = - 0.00095 < 0 => Khoảng phân ly nghiệm [ 0 ; 0.3380]x4 = 0.3376 => f (x4) = 0.0019 > 0 => Khoảng phân ly nghiệm [0.0019; 0.3380]Ta chọn nghiệm gần đúng ξ= 0.3376 Đánh giá sai số: |ξ- x4 | ≤ |mxf )(| với m là số dương : 0 < m ≤ f’(x)∀x € |ξ- x4 | ≤ 1.9.10 - 4 < 10 -2* Áp dụng phương pháp tiếp tuyến ( Niwtơn) trong khoảng [ 0 ; 1 ] ta có:f ’(1) = 1 > 0f ’’(1) = 12 > 0=> f ’(1) . f ’’(1) > 0 nên ta chọn x0 = 0Với x0 = 0 ta có: x1 = x0 - )()(0'0xfxf= 0.3333x2 = x1 - )()(1'1xfxf= 0.33766x3 = x2 - )()(2'2xfxf= 0.33766Ta chọn nghiệm gần đúng ξ= 0.3376Đánh giá sai số: |ξ- x3| ≤ |mxf )(| với m là số dương : | f’(x) |≥ m > 0∀x € [ 0 ; 1 ] |ξ- x3| ≤ 6 .10 - 5 < 10 -2* Áp dụng phương pháp dây cung trong khoảng [ 1; 2 ] ta có:Do f (1 ) = - 1 < 0 => chọn xo = 1 x1 = xo – )()()).((0afbfabxf−−= 1.083f (x1) = - 0.873<0 => Khoảng phân ly nghiệm [1.083; 2]x2 = x1 – )()()).((1afbfabxf−−= 1.150f (x2) = - 0.7 <0 => Khoảng phân ly nghiệm [1.150; 2]x3 = x2 – )()()).((2afbfabxf−−= 1.2f (x3) = - 0.526< 0 => Khoảng phân ly nghiệm [1.2 ; 2]x4 = 1.237 => f (x4) = -0.369 < 0 => Khoảng phân ly nghiệm [1.237 ; 2]x5 = 1.2618 => f (x5) = -0.25 < 0 => Khoảng phân ly nghiệm [1.2618 ; 2]x6 = 1.2782 => f (x6) = - 0.165 < 0 => Khoảng phân ly nghiệm [1.2782 ; 2] x7 = 1.2889 => f (x7) = - 0.1069 < 0 => Khoảng phân ly nghiệm [1.2889; 2] x8 = 1.2957 => f (x8) = - 0.068 < 0 => Khoảng phân ly nghiệm [1.2957; 2] x9= 1.3000 => f (x9) = - 0.0439 < 0 => Khoảng phân ly nghiệm [1.3; 2] x10= 1.3028 => f (x10) = - 0.027 < 0 => Khoảng phân ly nghiệm [1.3028; 2] Ta chọn nghiệm gần đúng ξ= 1.30Đánh giá sai số: |ξ- x10 | ≤ |mxf )(| với m là số dương : 0 < m ≤ f’(x)∀x € |ξ- x10 | ≤ -2.8.10 - 3 < 10 -2* Áp dụng phương pháp tiếp tuyến ( Niwtơn) trong khoảng [ 1; 2 ] ta có:f ’(1) = 1 > 0f ’’(1) = 12 > 0=> f ’(1) . f ’’(1) > 0 nên ta chọn x0 =2Với x0 = 0 ta có: x1 = x0 - )()(0'0xfxf= 1.6206896x2 = x1 - )()(1'1xfxf= 1.404181 . ija∑ Bài 7: Giải hệ phương trình:=−++++−745_8zyxzyxzyx(I)Bằng phương pháp lặp đơn ,tính lặp 3 lần,lấy x(a)=g và đánh giá sai số của x 3Giải: Từ phương. nghiệm dương nhỏ nhất của phương trình là : x= 0,3099 1Bài tập 6: Dùng phương pháp Gauss để giải những hệ phương trìnhAx=b. Các phép tính lấy đến 5 số lẻ sau

— Xem thêm —

Từ khóa: bài tậpphương pháp tínhbài giải Bài tập và lời giải

Xem thêm: Bài tập và bài giải phương pháp tính, Bài tập và bài giải phương pháp tính, Bài tập và bài giải phương pháp tính

Gửi bình luận

Bình luận
Lên đầu trang
  • Cậu Sún Numeber
    Cậu Sún Numeber · Vào lúc 09:39 am 07/01/2014
    hay
    Trả lời
  • BasicEnglishForEveryone
    BasicEnglishForEveryone · Vào lúc 04:28 am 10/04/2013
    Chúc bạn sức khỏe dồi dào để up nhiều tài liệu hay cho cộng đồng. Thanks!!!!!
  • Liễu Diệp Nhi
    Liễu Diệp Nhi · Vào lúc 12:28 pm 08/08/2013
    Tài liệu rất chi tiết và dễ hiểu. Cảm ơn bác nhìu nhìu ^^
  • fresh boy 21
    fresh boy 21 · Vào lúc 01:14 am 22/12/2013
    Rất cảm ơn bạn. Tài liệu hay
  • fresh boy 26
    fresh boy 26 · Vào lúc 05:46 pm 23/12/2013
    Thanks bạn nhìu nha, rất hợp nhu cầu hì hì
  • fresh boy 41
    fresh boy 41 · Vào lúc 06:31 am 27/12/2013
    Bác nào có share nữa nha. Thank Thank
Xem thêm
Đăng ký

Generate time = 0.0658750534058 s. Memory usage = 13.9 MB